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1 .0 INTRODUCTION

As radar systems designs become more complex and versatile, their per-

formance becomes increasingly sensitive to the operational environment. This

places an increased burden on the designer to incorporate the effects of the

environment in system design studies. However, before this can be done, it is

necessary to develop an accurate model of the environment. In the case of

ground clutter or multipath, this means that there is a need for rough sur-

face scattering models. Such models must not only be based upon sound physi-

cal principles but also exhibit agreement with measurements.

The purpose of this study is to provide improved models for surface scat-

tering from terrain in the microwave frequency range and near grazing inci-

dence. The basic approach entails applying the composite surface scattering

theory to a lossy, randomly rough, dielectric surface. As long as the inci-

dent energy is not too near grazing and the surface is reasonably free of

sharp edges or cusps, the composite model should be a reasonable description

of the scattering process. Since the composite model is based upon the combin-

Ing of two asymptotic scattering theories, it is approximate. Thus, an addi-

tional goal of this study is to investigate new techniques for improving the

composite model. As our understanding of the scattering process increases

and the models become more accurate, complex factors such as vegetation and

snow cover can be studied, analyzed, and incorporated into the basic model.

Thus, the overall effort comprises a phased approach.

This interim report details the initial results of the study. Present

and future efforts on this investigation will be concerned with a more detailed

study of some of the results reported here and also obtaining improved models

for the coherent or average scattered field.
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1.1 Summary of Results

Section 2 corrects an error in the basic composite scattering model.

In particular, it is shown that shadowing is improperly accounted for and this

error is corrected. In the corrected version of the composite mqdel, it is

shown that the conventional shadowing function multiplies both the zeroth and

first order incoherent scattered power perturbation terms. Thus,. even for a

perfectly conducting surface the first order term will go to zero for back-

scattering at grazing incidence due to the shadowing function. The first

order perturbation power suffers an additional attenuation due to the shadow-

ing of unfavorably oriented large scale surface slopes; however, this effect

is relatively small compared to the impact of the conventional shadowing func-

tion.

Section 3 demonstrates how the shadowing function for non-Gaussian may

be quite easily obtained from existing shadowing theories. The important

surface characteristic in the general case is the probability density func-

tion of the large scale slopes in the plane of incidence. Explicit results

are obtained for a surface characterized by roughness whose probability den-

sity function is exponential. The results of this study are particularly im-

portant for terrain scattering because terrain cannot always be described by

a Gaussian height probability density function.

Section 4 extends the composite model to bistatic scattering from a

lossy, dielectric, rough surface. The details are presented for three cases

of increasing complexity; backscattering from a surface with only small scale

roughness, biatatic scattering from a surface with only small scale roughness,

and, finally, bistatic scattering from a composite (large and small scales of

roughness) surface. This approach is a logical progression from the simple

to the complex and is therefore beneficial to the reader. Furthermore, this

2



approach facilitates checking the results of the perturbation theory against

existing solutions.

Section 5 discusses one technique for relating the joint probability

density function of the surface heights to the joint density funqtion for the

slopes. The technique was originally obtained from an analysis of optical

scattering from a rough surface but its relevance to this problem has apparently

been overlooked. Although the technique is not always applicable to measured

data, there are cases where it can provide the desired transformation.

3



2.0 A CORRECTION TO THE COMPOSITE SURFACE SCATTERING MODEL

2.1 Background

In [1], a solution to the problem of backscattering from a randomly rough,

perfectly conducting surface comprising both large and small scales of rough-

ness was presented. As a direct consequence of the stipulation that the sur-

face roughness was a zero mean jointly Gaussian process, the scattering cross

section per unit area was determined to be the sum of two terms, i.e.

(a , 0 (61 + [a The [a 0 (0) 0  contribution ispp pp (0)0 +  pp,, I Th pp,

dominant near normal incidence and results from the shadow corrected optical

like reflection from properly oriented facets or specular points on the sur-
0

face. The [a (0,)1 term is due to Bragg resonance scattering from the

small scale surface features with appropriate accounting for the resonance

broadening effects of the large scale surface undulations. Although shadowing

is formally accounted for in a correct manner in the G, (,0)]i term,

there is an error in the exact representation of the shadowing function which

leads to an incorrect estimate of the effects of shadowing on large angle of

incidence scattering. The goal of this section is to correct the above error

and to properly account for the effect of large scale shadowing on the small

scale scattering term.

2.2 Discussion of the Error

The analysis presented in [11 relating to the determination of [a ,(0,)
pp

is correct up to and including equation (23). The problem with the analysis

following (23) is a result of inadequate attention to the definition of the

shadowing function R(6,0) . That is, R(6,0) , as it appears in (23) of [1],

can and should be expressed as follows;

R(0,0) kox k oy (2.1)

4



where

P (0)xk (2. 2)

is the probability that an incident ray having direction i will intersect aia

point on the large scale surface with orthogonal slopes and C and will

not be shadowed by any other part of the surface regardless of the height C

of the point in question. The symbol <.> in (2.2) denotes the ensemble

average over all values of large scale height and the notation p(O)

is the same as that employed by Sancer [2] in his excellent analysis of the

effect of shadowing on [G 0 ,(e, It should be noted that as a result

of the integrations in (23) of [1], the shadowing function R(0,0) is equal

to p(o)(.) evaluated at the specific large scale slope values given by

k /B and C k /B where k -2k sin 6 cos 0 , k -2kosin 8 sin€ ,
LX ox Ly oy ox 0 oy 0

B 2k 0 cos 6 , 8 is the angle of incidence relative to the normal to the mean

(4-0) plane, and 0 is the azimuth direction of incidence.

In order to more clearly understand and therefore rectify the error in

(1], it is beneficial to repeat equation (23) of [], i.e.

27 f f IV2P1 x''21l t
-/ -

,k k k k
exp(-Jkox -jkoyAY) dAxdAy R(e,o)f, ox ox o2 k°)ox o T'TB' B' B

0 .1 f f exp{J(koxx+k Ay) -4k2 cos2 E [1 P t(,&x,Ay)] } dAxdAy

- (2.3)
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where Ax -x 2 -x and Ay=Y -y 1  In (2.3) I(x, yjl is one if the point

2 2
(xl Yl 9 I on the large scale surface having slopes C£x I  and C£Yl is

2 2 2 2 2

illuminated and zero if it is shadowed. The function f, is defined in [11,

2 is the mean square height of the large scale surface, and p is the

normalized autocorrelation function of the large scale surface height. It

should be noted that the left hand side of (2.3) represents the Fourier trans-

form of the <o> term (from AxAy- space to k k -space) and (2.3) is
ox oy

supposed to show where the transform variables appear in the result. Such know-

ledge is essential to accomplishing the convolution of (2.3) with the small
0

scale surface height spectrum because this convolution determines [app,]i

That is, in the convolution k and k must be replaced by k0 -k and

k -k where k and k are the new variables of integration (see (32) of
oy y x y
[11).

If R(O,4) in (2.3) had been replaced by its precise definition, as given

by (1), the problem of determining where k and k appear in the rightox oy

hand side of (2.3) would have been correctly solved. Unfortunately, this was

not done. Instead, R(8, ) was incorrectly written as (1 +C 0) and, through

the use of trigonometric manipulations, C was expressed in terms of k and

k , see equations (24) through (28) in [1]. This development failed to rec-oy

ognize that C does not, in general, depend upon the transform variables in
0

(2.3). That is, if one changes the transform variables from k to k and

from k to k , C would still only depend on k = -2k sin 8 cos 4 andoy y o ox o

k = -2k sin 0 sin J . The primary consequence of this error is to provide anoy o

incorrect formula for R(.) for use in all equations following (28) in (1].

As will be shown, this error fortunately has negligible consequence on the

numerical results presented in [1].

6



2.3 Correct Analysis

The error identified and explained above can be rectified by determining

the functional dependence of the'right hand side of (2.1) upon the large scale

slopes x and since they are replaced by the transform variables k

and k . This can be done in a relatively straightforward manner by general-oy

izing Smith's [3] results to the case where k is at an angle 7/2-0 with
i

respect to the y-axis rather than directly along the y-axis. Such a general-

ization leads to the following;

(0 ) U(ctne - jCOS -Cos y s(n24
P l+o(2.4)

where C is given by (24) of [1] and U(.) is the unit step function which0

is one if the argument ts positive and zero if the argument is negative. Of

particular note in (2.4) is the fact that and 2y only appear in the

argument of the unit step function. Substituting (2.4) into (2.1) yields the

correct expression for R(o) , i.e.

k k
U(ctn e - Tx cos - s

R(e,) - B (2.5)
l+C o

If one substitutes k -- 2k sin6 coso and k -- 2k sin0 sin 0 in (2.5)
ox o oy 0

such as required in the determination of [a 01]0 1 then R(0,0) - (1 + C

and it will depend only on the angles 0 and 0 and the mean square slopes
2 22

and C of the large scale surface (see equations (24) and (25) of [1]).

0
However, in the convolution expression for [app, the unit step function
* pp 1

must be retained. That is, one must use the following relationship;

( e kox- x C sin
,kox -k x  k oy-k U tn0 c oase 2ko0 cosJ

2k cse ' 2k cosG1 + Co 0

(2.6)
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I II ~ Equation (2.6) leads to a completely different interpretation, of the ef-

fects of large scale shadowing on [Upp0] from that erroneously presented in

[1]. According to (2.6), shadowing now gives rise to an attenuation factor

(I +C)- which is common to both [a 010 and [apa] . This result is

merely a consequence of the fact that small areas on the surface capable of

producing strong Bragg scatter, i.e. Cx - y 0 , are as equally shadowed

as the areas properly oriented for specular reflection, i.e. o/B and

y= ky/B. This statement can be easily verified by noting that for both

sets of the above values of C and y ,=U(ctn C sin)

in equation (2.4) and so R(0,0) - (I +C)-1 Since both the [ap, 0  and

[aYp]l terms suffer the same attenuation due to shadowing, the transition

region in 6 (where [ 0p 1]0  decreases and [p p ]1 becomes predominant)

is independent of shadowing effects. Since shadowing results from the slopes

of the large scale surface structure and since the large scale slopes are not

the important surface characteristic in determining the transition region,

this result demonstrates that the theory is self consistent.

The unit step function in (2.6) serves the very important purpose of es-

tablishing the limits on the integrals in the convolutional expression for

[cy,]I , see (32) of [1]. However, before this aspect of the problem is con-

sidered, it is worthwhile reviewing the physics behind the reason for the unit

step function in (2.6). The unit step function appears in (2.6) because there

is a certain range of surface slope values for which the probability of having

an incident ray shadowed is identically one (3]. This result may be readily

understood by referring to Figure 2.1. In (a), the slope of the surface is

negative at the point of intersection and the incident ray is not shadowed in a

small neighborhood of the point. In (b), the surface slope is equal to the

slope of the incident ray (ctnO) and the ray is therefore tangent to the surface

8



Incident Ray

e Large Scale

(a)

(b)

(c)

Figure 2-1. Diagrams explaining the reason for the unit step
fmaction in the shadowing function. Only portions
of the large scale surface are shown since the small
scale structure does not impact the shadowing.



at the point of intersection. In this case the point may or may not be shadowed

in a small neighborhood Qf the point depending upon the surface curvature. In

(c), the surface slope exceeds the slope of the incident ray and the ray is

necessarily shadowed by some portion of the surface in a small neighborhood

of the point. Thus all points on the surface for which the slope, in the direc-

tion of the incident ray projected onto mean plane, exceeds the slope of the

incident ray will be shadowed. Stated another way, the probability of such

an event is one. This is the physical reason for the unit step function in

(2.4) and subsequent equations involving the shadowing function.

In ozder to retain the physical significance of the unit step function,

it is desirable to deal with a particular form of the equation for [ap( 0 1

i.e. equation (40) of [1],

-f
r] 4k (1+C0 - 0 0 S(2k cos O&+ k 2k cos e +k )Opp, (0, 1 ox 0 o oy

- U(ctnB+Ccoso+y sino) rpp,2 (_Ex.

* exp - x d dy - I (2.7)

2 x 2 J 
k

where I k is defined in [1]. Equation (2.7) expresses the convolutional
kd

broadening of the spectrum about the Bragg wavenumbers k and k as a
ox oy

direct consequence of the distribution of large scale slopes; that is, x

and Ey are equivalent to C and y ' It should be pointed out that the

correct expression for the shadowing function has been used in (2.7). The

curve in the x& y-plane separating the regions where the step function is

10



zero and one is a straight line, i.e. Ex Coss + Fy sins = -ctne . Except

for special values of 0 given in Table I, the step function in (2.7) will

consequently give rise to a coupling between the x and &y integrals. More

specifically, the lower (upper) limit on the x integral in (2.7) is given by
x

- (ctnO + sin (.
&x cos (2.8)

for cos 6 > 0 (<0) . From an analytical point of view (2.8) represents an

irritating consequence of shadowing. From a practical standpoint, the restric-

tions imposed by (2.8) may not be numerically relevant for a large range of

incidence angles as demonstrated by the following argument. The dominant fac-

tor in the integrand in (2.7) is the slope dependent Gaussian term which is

equivalent to the probability density function for the large scale slopes. For

most practical purposes, the effect of this term is to truncate the range of

integration in (2.7) to about a ±3-sigma excursion from = = 0 . The

- 3-sigma excursions for and Ey are ± 3 /C and ± 3/C7 , respec-

tively, and substituting these values in the unit step function argument

yields the following requirement

+3Vit cos -3 ± y sin, >-ctne (2.9)

for the unit step function to be unity. If 0 < < w/2 , the "worst case"

situation occurs when &x - 3t/E and y =- 3 V or
2.x y t

3 xcos8 + 3 ! sinO < ctne (2.10)

The worst case situation occurs when the left hand side of (2.9) is most nega-

tive. Thus for numerical purposes and all values of 0 satisfying (2.10),

one can replace the infinite limits in (2. 7) by ±3 V and 3 2
1x ty

11
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TABLE I

Integration Limits for Eqn. (2.7) and

a Multiple of ,r/2

* .integration y integration
x. y

limits limits

lower upper lower upper

o -ctn 0 0 -W 00 1

7r/2 - co - ctn 0

i -00 ctn8 -00 G

31r/2 -0 - ctn O

12 .



Conditions similar to (2.10) can be obtained for other ranges of * in a

straightforward manner.

It is implicitly assumed that the upper limit on 0 resulting from (2.10)

also satisfies the optical criterion required of the large scale surface*,

namely that 4ko 2E c2os 2 > 1 . For moderate slopes there will generally be

a gap between the maximum value of 0 resulting from (2.10) and the upper

bound on 0 resulting from the large scale surface optical criterion. In

this case, one must necessarily revert to the more exact limits such as given

by (2.8). What is happening in this situation is that the ± 3-sigma support

of the slope density function in (2.7) is overlapping the region of the

xy-plane where the unit step function is zero. In fact, if one could go to

the grazing incidence limit (0-7r/2), it is readily observed from Figure 2.2

that only half the x y -plane is encompassed by the integrals in (2.7). Thus,

in addition to the attenuation of [r , ]1 near grazing incidence due to the

( +Co) factor, there is another reduction factor resulting from the shadowing

of points on the large scale surface having positive slopes (see Figure 2.1).

It should be remembered that although the impact of the unit step function upon

the limits of the integrals in (2.7) is somewhat involved, it is a direct con-

sequence of the rather simple slope-shadowing limitations explained in Figure

2.1.

The analysis presented above does not alter the general composite surface

scattering theory set forth in [l]. It does, however, correct and expand the

theory in El] as it relates to the effects of shadowing upon large angle of

incidence backscattering from a randomly rough surface. This additional analy-*

sis was necessitated by the use of an incorrect functional form for the shadowing

function in [1].

*This criterion has also been called the stationary phase approximation (4]
and the deep phase modulation condition (5].
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2.4 Discussion of Numerical Example

The use of an incorrect shadowing function in Sections I through IV of

(1] was primarily a sin of omission. That is, since nearly all the results

in Section I through IV of [11 were formal in nature, it was not necessary

to use the erroneous shadowing function given by (28) of [1]. However, the

numerical example comprising Section V of [1] does require attention in order

to properly account for the effects of large scale shadowing. In the example

presented in [1], R was set equal to unity because the large scale slopes

were relatively small. According to the analysis presented above, this step

is not justified for all angles of incidence. The correct effect of shadowing

is addressed below.

2 2
As in Section V of.[l], it is assumed that r pp 1' ,0) and the

surface height spectrum is isotropic, i.e. C 2 y M 2 2/2 and

S(kx ky)= S(42+k2). Substituting kcos - k ksina - ky and

dk dk - kdkda in (32) of [1] and using (2.6) above for the shadowing func-
x y

tion yields;

2w o

2 2 100 
7

2 0  pp k cos(a- )
[Opp22 S(k)U tnO + tan O + 2k cos )

2 cos 2(1+C) oIt 0 o kd

2 2 2 i2 2 2exp- 4k sin 0 + k + 4kk sine cos(t- )] /4ko 2 cos Okdkda (2.11)

The unit step function is unity whenever kcos(ct- ) > -2k 0 /sinO . Since the

minimum value of cos(a-$) is -1, this inequality will be satisfied for all

a if k is restricted to less than 2ko/sin8 . Since the range of k from

2k /sin8 to * for cos(a-*) > 0 contributes little to the integral in (2.11)

(because Itk is small), the k-integral limits can be approximated by

15



[kd, 2 k /sin 0]. In this range of k , the step function is unity and the M-

integration can be accomplished with the following result;

2k /sinO

4k 2 r 2, (00) k s e ( k - 2 k 0 s i n 0 )

pp 1 2 S(k) exp 2-

i (tC k cos 0 4k0 kt cos 

cok C9 2 Co 2 o

where I (-) is a Bessel function of the second kind. The right hand side of

(2.12) may now be compared with the [a 0 ]l part in (44) of [1], i.e.

4ko r 1(.0 o ksn ) (k- 2 k s i n 0 ) 2

PPk S ksin- exp - o 0 k sin 0 k dk
2 2 2 2 2

Cos 0 k k0 tcos2 0 4k 0 o t cos 0 k oct cos 0

(2.13)

The obvious differences are the factor (1 +C )-1 and the finite upper limit

on the integral in (2.12). Figure 2.3 illustrates how (1 +Co )-1 varies with

8 for 4 t . 0.0224 which was the value of mean square slope used to construct

Figures 3 and 4 of [1]. Of particular note in the plot of (1 +C o ) -  is the

fact it does not start to decrease until 0 exceeds 850; at 87.50

(I + -2.5 dB. The value of 0 = 87.50 is the point at which 4ko2 2cos 2010

and, consequently, represents the approximate limit of the large scale theory.

That is, for 0 > 87.5* the analysis of the scattering from the large scale

structure on the surface can no longer be accomplished using optical techniques.

The effect of the finite upper limit on the integral in (2.12) is much less

dramatic. In fact if the Cos20 > 10 criterion is ignored and the limit
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of 0 900 is taken in (2.12), it can be shown* that the finite upper limit

gives rise to a 3 dB reduction from the value of (2.13) at 0 - 90% This same

conclusion can also be obtained from (2.7) and it is a direct consequence of

the fact that all positive slopes are excluded from consideration at 0 - 900

(see Figure 2.1). Within the range of validity of the optical criterion, the

finite upper limit on the integral in (2.12) gives rise to much less attenua-

tion than the (1 +Co) factor.
0L

In view of the above analysis, it is concluded that the numerical results

presented in Section V of [1] are correct as they were presented. Determina-

tion of the spectral division wavenumber kd is in no way altered by the inclu-

sion of the correct shadowing function. The curves shown in Figures 3 through

6 of [1] are correct because they do not encompass the range of 0 where shadow-

ing is important (6 885*). As noted above, the onset of shadowing effects

occurs approximately where the optical criterion (4k 2 2 Cos2 0cos ~ 1) isvio-

lated, i.e. 0 Z 87.50 , for the numerical example presented in [1]. However,

for larger slopes shadowing must be considered since it will cause a signifi-
0

cant reduction in p 0, near grazing incidence.

2.5 Summary

In the analysis presented in [1], it was correctly demonstrated how one

includes the effects of large scale surface feature shadowing on the backscat-

tering cross section of a composite surface for large angles of incidence.

Unfortunately, an incorrect form for the shadowing function was used in [1]

which led to the erroneous evaluation of the impact of shadowing upon large

angle of incidence scattering. In this section, the correct form of the shadowing

*To show this one can apply Laplace's method to asymptotically evaluate (2.12)

as cos 0- 0. However, it must be remembered that the maximum of the integrand
occurs at the upper limit of the integrand as cos 8 0 and this impacts the
evaluation of the integral [6].

18



function has been presented and included in the formulas obtained in [1].

Particular emphasis has been placed upon the physical significance of shadow-

lng as it effects large angle of incidence scattering. It has been shown that

shadowing leads to multiplication of both [p, 10 and (a, 11 by the fac-
-1 0

tor (l +Co )-l which causes [app]1  and, thus, app, to go to zero near
0 pp 1pp

grazing incidence for a perfectly conducting, randomly rough, composite sur-

face. Furthermore, there is another effect which leads to an additional 3 dB

attenuation at grazing incidence (0 -90*)*. This effect results from those

slopes which, with probability one, will cause the point on the surface having

these slopes to be shadowed. At grazing incidence, all positive slopes are in

this class.

A reevaluation of the numerical results presented in [1] revealed that

use of the correct shadowing function did not alter any of the results rela-

tive to the choice of the spectral dividing wavenumber kd. Furthermore, none

of the curves presented in [1] were effected because they only encompass the

range of e from 0 to 708 and the effects of shadowing were present for Z85.

Also, techniques were presented relative to overcuming some of the analytical

difficulties resulting from the use of the correct shadowing function.

*It is reemphasized that exact grazing incidence cannot be addressed by this

theory because the optical criterion assumed of the large scale surface fea-
tures is violated. The -3 dB figure is significant only in its magnitude rela-
tive to the effect of the (l +C )-l factor.
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3.0 SHADOWING BY NON-GAUSSIAN RANDOM SURFACES

3.1 Background

Shadowing of random surfaces was originally introduced [1] as an ad hoc

correction to the results provided by physical or geometrical optics approxi-

mate theories of rough surface scattering. Sancer [2] subsequently demonstra-

ted how shadowing could be rigorously accounted for in the optical limit for

random surfaces. Furthermore, he showed that previously derived expressions

for the effects of shadowing based upon purely geometrical considerations [3,

4] were directly applicable. Using Sancerts results, Brown [5,6] showed how

shadowing could be rigorously included in a formulation for scattering from

random surfaces characterized by many scales of roughness, i.e. composite

rough surfaces.

While shadowing theory is reasonably mature, it has only been applied to

jointly Gaussian random surfaces. The Gaussian results are probably adequate

for the ocean but they are questionable for terrain and completely inadequate

for sea ice fields. For sea ice, water first fills all surface depressions

below mean sea level and then freezes. This elimiantes all surface height

excursions below mean sea level and the probability density function of the

surface roughness is clearly non-Gaussian. For these reasons, it is important

to extend shadowing theory to the point where it can easily accommodate non-

Gaussian surface statistics; such is the purpose of this section.

3.2 Analysis

The special case of backscattering is chosen to illustrate the approach;

this minimizes some of the conceptual details associated with the more general

bistatic case. It turns out that the extension of the results to the bistatic

geometry can be accomplished almost by inspection. The analysis presented by

Smith [4] is general to a point in the development; however, there are a number
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of integrations which must be accomplished in order to arrive at the final

expression for the shadowing function. In the case of a jointly Gaussian

surface these integrals can be performed and a closed-form result is obtained

for the shadowing function. For non-Gaussian surfaces, the required integra-

tions appear to be, at best, formidable. The purpose of this section is to

show that if the height and slopes of the surface are independent random vari-

ables then the final expression for the shadowing function is drastically sim-

plified.

For the reader's convenience Smith's notation will be employed in this

section and his Figure I is essentially repeated here as our Figure 3.1. There

are three critical relationships from Smith's paper [4] which are required.

If S(F,e) is the probability that no part of the surface will intersect the

incident ray (at an angle 6 with respect to the normal to the mean flat sur-

face) on its way to point F on the surface then S(F,e) is given by

00

S(F,O) - h(p -q 0) exp, (.J()OT~ (3.1)

where h(-) is the unit step function, . ctn ,q is the slope of the

surface in the y-direction at F , and g(T)AT is the conditional probability

that the surface will intersect the incident ray in the interval (T,T +AT)

given that It does not intersect the ray in (0,T) . The function g(T)AT is

determined by the behavior of P3 (E,qIF,T) which is the joint probability of

the height and y-slope at the point (x-O,y-T) conditioned upon the

height ( o),and y-slope (qo) at point F ; in particular,
0 0
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g(-)AT I f AT (3.2)

fdqj P3 ( ,qjFj)dC

The average of S(F,O) over all surface heights with po M 0 and qo W -1/P

is the desired shadowing function R(e) , i.e. the probability that a back-

scattering specular point on the surface will not be shadowed.

Smith proceeded to evaluate (3.2) in the Gaussian case by assuming that

the heights and slopes at F were uncorrelated with those at y-T . The

same assumption will be made here. Furthermore, it will be assumed that the

height and slopes are independent random variables; thus,

P3(EqlF,) I(P2(q) (3.3)

where PI () is the height probability density function and

P2 (q)- P (p,q)dp (3.4)

where P2 2 (p,q) is the joint probability density function of the x and y

slopes. Substituting (3.3) into (3.2) yields the following

r P I(E 0 + ]T)

g(T) 0 + )IT (3.5)

f P (E)dE

where
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r f(q -")P 2 (q)dq (3.6)

The denominator of (3.5) is recognized as the distribution function for

evaluated at &o+JT , i.e. F1 (o+]IT) . Also, P1 (C0 +It) in (3.5) is

equal to the derivative of the distribution function evaluated at & o +1JT

Consequently, (3.5) becomes g(T) = [r/FI(Eo+wT)]dF (&o +UT)Id(Co +pT)

Substituting this result in (3.1), making the change of variable n= +UT
0

and noting that dF1 /F1  d(tn F1) yields

S(6 F) - h(I - q) exp r/vi d[ZnF (n) (3.7)

where in denotes the natural logarithm. Since FI(c) = 1 , (3.7) reduces to

the following;

S(O,F) - h(U -q ) F (&o)rb. (3.8)

Remembering that P?(o) - dFl(Co)/d ° , the average of (3.8) over all values

of o simplifies to

Eo

or

h(Ij -q )
0(Poqo) riT + 01 (3.10)

since F1 (-q) - 0 and r/p + 1 > 0 . With qo -1/p , the shadowing func-

tion appropriate for backscatter reduces to the following simple expression;
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R (e) -41 + f (/u -1)P 2 ()dq)- (3.11)

where, in sumary, p - ctnO , e is the incidence angle, and P2 (q) is

the probability density function of the slopes of the surface in the plane of

incidence defined by the incident ray and the normal to the mean surface. It

is interesting to note from (3.11) that for normal incidence (0-0) R(O) - 1

whereas at grazing incidence (-T/2) R(7T/2) = 0 since p - 0 and

f qP2 (q)dq > 0 . Thus, these basic properties of the shadowing function are

0
independent of the detailed properties of the slope density function. One can

easily verify that (3.11) is identical to the results obtained by Smith for

the special case of a jointly Gaussian surface.

The form of (3.10) compared to Smith's results, i.e. (23) of [4], suggests

that the above result can be directly translated to the bistatic case and, in-

deed, this is the case. For the bistatic case, a generalization of Sancer's

[2] results will be given. It should be noted that the inequalities involv-

ing the angles of incidence (0 ) and scattering (0) , just prior to Sancer's
0

equations (49), (50), (54) and (55) should be reversed. With P = ctn and

po - ctn 0o , Sancer's results are easily generalized by replacing his Co by

r(po)1p°  and C2 by (p)f .

3.3 Example

To illustrate the above results, the backscattering shadowing function

R(O) will be determined for the exponential joint slope density function in-

troduced by Barrick [7], i.e.

P2 2 (pq) " 3 exp - 1 6(p2 + q2)/w2 (3.12)
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where w2  is the mean square slope of the surface roughness. P2 2 (p,q) In

(3.12) represents a surface whose roughness is isotropic, w2 /2 = <p2> W <q=2>

with statistically dependent slopes. That is, the joint density function can-

not be expressed as a product of the marginal or individual densities. The

calculation of the marginal density P2 (q) , using (3.4), is reasonably straight-

forward and the result is as follows;

P2 (q) 6 q K1 ( 6  q /w) (3.13)

7rw

where Kl(.) is one of the modified Bessel functions of order one [8]. It

is interesting to compare this density with a Gaussian, i.e.

P2 (q) - exp(-q 2/2w2)

and this is done in Figure 3.2 where the normalized densities P2 (q)w are

plotted as a funciton of the normalized slope q/w . It should be noted from

the plots in Figure 3.2 that the "exponential" density shows a much greater

probability of occurrence of small slopes than the Gaussian. This result is

in agreement with one intuitive approach for generating a surface character-

ized by (3.12), e.g. one strongly filters all surface height excursions below

a certain level to eliminate the possibility of large negative height excur-

sions. This process increases the probability of small slopes at the expense

of the large slopes.

Substituting (3.13) in (3.11) and using tabulated integrals of Bessel

functions given in 19], the following closed-form result is obtained for the

backscattering shadow function R(O)

x() + -1 + + (x) L (x) + L(x)K(X) (3.14)31E) = K2 (x ) +2+ l20
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where x= (r/w)ctn 6 and the Ln() , n-0 or 1 , symbol denotes the modified

Struve functions [8]. Using asymptotic forms for the special functions in

(3.14), it may be readily verified that R(O) - l(x-) and R(N/2) - O(x=0)

The modified Struve functions may be computed from tables given 4n [8] for

x Z 5 and by a power series for smaller arguments.

Figure 3.3 compares (3.14) and the shadowing function for a Gaussian func-

tion obtained by Smith [4] for a range of rms slopes. The shadowing function

for the exponential joint slope density is larger because the marginal slope

density given by (3.13) exhibits less likelihood for large slopes than the cor-

responding Gaussian density. That is, the larger slopes are the source of

more significant shadowing.

3.4 Sumary

The shadowing theory developed by Smith [4], while sufficiently general

to deal with any joint slope density function, involves what appears to be a

number of rather complicated integrals. Under the assumption that the sur-

face height is statistically independent of the surface slopes, it is shown

that Smith's theory can be reduced to a single integration involving the mar-

ginal density function for the slopes in the plane of incidence. Using this

result but without regard to the specific form of the marginal density func-

tion, it can be shown that the backscattering shadowing function is unity at

normal incidence and zero at grazing incidence. Because the final result in-

volves an integration or smoothing process, it is amenable to the use of

histogram data for the marginal slope density.

This theory is applied to an exponential joint slope density represent-

ing an isotropic surface for which the slopes are not statistically indepen-

dent. The backscattering shadowing function for the exponential and Gaussian

joing slope densities are compared and it is found that the Gaussian surface

29
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produces stronger shadowing. This result is found to be a consequence of the

greater likelihood of large slopes with the Gaussian density.
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4.0 BISTATIC SCATTERING FROM LOSSY RANDOM SURFACES

4.1 Background

Prior to the mid-1960's, electromagnetic scattering from randomly rough

surfaces was modeled using either perturbation theory or physical optics [Il.

First order perturbation theory appeared to do a reasonable job of analytically

describing the scattering process when the surface roughness was small in terms

of the electromagnetic wavelength and multiple scattering was negligible.

Physical optics produced meaningful results in and about the specular scatter-

ing direction when the surface exhibited very large but smoothly undulating

height variations. Unfortunately, there were numerous attempts to apply these

theories to situations where the implicit assumptions in the models were vio-

lated. These attempts usually assumed some surface parameter such that the

scattering measurements and the "model" were brought into agreement. However,

it was very quickly recognized that these attempts were highly suspect because

of their failure to meet certain fundamental principles.

As more and more rough surface microwave scattering measurements were

acquired, it became obvious that neither first order perturbation theory nor

physical optics were individually adequate for all angles of incidence and

scattering. Conversely, it appeared that physical optics seemed to do a good

modeling job near the specular scattering direction while first order pertur-

bation theory was reasonably accurate for all other scattering angles. Almost

simultaneously, researchers in the U.S. [21 and the U.S.S.R.[3,4] began to

advocate the combining of these two diverse theories in what was later to be

called the composite surface scattering model. In this model, the surface

was considered to be made up of both large and small scale surface features

(height and spatial wavelength) relative to the electromagnetic wavelength,

A . The large scale surface features were considered to be responsible for
o

32



the physical optics-like scattering near the specular direction. The small

scale surface structure gave rise to a perturbation field (to the optical

field) which was the dominant scattering mechanism away from the specular

scattering direction. The interaction between the optical and first order per-

turbation fields was assumed to be totally dependent upon the tilting of the

small surface structure by the larger gently undulating features [5].

More recently, rigorous first order boundary perturbation theory has been

applied to the problem of backscattering from a perfectly conducting, Gaussian

distributed rough surface [6]. The results of this analysis indicated that

much of the original work on this problem could be rigorously justified.

Furthermore, additional insight was gained in regard to such aspects of the

problem as shadowing (see Section 3 of this report), spectral dichotomy, and

the tilting interpretation. A logical extension of this latter theory encom-

passes bistatic scattering from a lossy dielectric surface. The purpose of

this section is to present the details associated with such an extension.

Before the details of scattering from a composite dielectric surface are

presented, it is illuminating to consider two much simpler cases. The first

is backscattering from a dielectric surface having only a small scale rough-

ness while the second case addresses bistatic scattering. The advantages of

this approach are that it leads to familiarity with the perturbation technique

and it sets forth the principles that will be used for the composite surface.

4.2 Backscattering From A Dielectric Surface With Small Scale Roughness

The geometry for this problem is shown in Figure 4-1. The mean or aver-

age surface is the z = 0 plane; the random roughness Cs superposed upon

this plane is positive for s > 0 and negative for C < 0 . Below the rough

surface (z < ), the relative dielectric constant of the medium is Cr and

the relative magnetic permeability is taken 'to be the same as for free-space,
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i.e. 'r = 1 . Above the rough surface (z> ) , the medium is free-space,

i.e. r -1 and j r 1 .

Provided that the roughness is small with respect to the electromagnetic

272 2
wavelength X 0, e.g. 4k 0 C << 1 where k 0 21T/X 0and s i the mean.

square height of the roughness, the scattered field Es  can be expressed as

follows;

E. E+6 E (4.1)

where 6°1 is the field scattered by a surface having no roughness (the zeroth

order perturbation) and 61E is the scattered field which depends on the rough-

ness to first order only (the first order perturbation). The primary assump-

23
tion in (4.1) is that higher order terms such as 0( 2 ) , 0() , etc., are

negligible. The zeroth order perturbation field 6°E is trivially determined

since it is just the field reflected by an infinite, flat dielectric interface.

Both Mitzner [7] and Burrows [8] have obtained particularly useful expressions

for 6 E . The Mitzner result is more straightforward but it is restricted to

small roughness perturbations superposed on a flat plane. Burrows' solution

for 61E is somewhat more complicated but it is more general in that the unper-

turbed surface need not be planar or even deterministic. For small scale rough-

ness on a plane, the Burrows formulation requires a bit more effort in computing

61E than Mitzner's result. For a composite surface, only the Burrows result

is sufficiently general to address this problem.

At first glance, the Burrows expression for 61E appears to be somewhat

cumbersome and confusing. However, if it is realized that the result is obtained

*Mitzner's result can actually be applied to any unperturbed surface for which
the wave equation is separable. For the problem considered here, the surface
is restricted to a plane.
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from an application of reciprocity then the notation becomes more meaningful.

Basically, one deals with two incident electric fields of the form

E, - E e E, E exp(-ki-r )  (4.2a)

and

Ei' = Ei ' 2' E,'= Eo exp(-j ki' -') (4.2b)

where the primed field may have a different polarization and direction of inci-

dence than the unprimed field. Burrows' expression for the first order per-

turbation (electric) field scattered in the direction -k' and polarized in

the e' direction is as follows [8];

k 2 exp(-jkoR) .,,

cS'E.e, = 0o0 r [dE-D + AB.H' - IH.B' - AD.EJ s dSo (4.3)41TR E °  0

S
0

where it is assumed that 61E-2' is measured in the far-field of the rough

surface. The distance R is measured from the origin of the reference co-

ordinate system on the mean surface to the point of observation or measurement

of 61E.e ' and °  is the permittivity of free-space. The fields E' HI

D' and B' are the fields on the unperturbed surface (S ) due to the primed
0

incident field while , , and A are the discontinuities in the

fields on the unperturbed surface (S due to the unprimed incident field.

Thus, to determine the ep-polarized component of the scattered first order
p

A
perturbation field in the general direction k one merely sets 8' -9 ands p V
ki =-ks in the expression for the primed incident field Ei , computes the

resulting fields i' H , D' , B' on the unperturbed surface SO , and sub

stitutes these results in (4.3).

A AFor backscattering k S -ki so according to the above receipe, k I k i
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which in the coordinates of the geometry shown in Figure 4-1 is as follows;

ci k i - ko(-sinO cos 2- sine sin9 - cos(4.4)

Contrary to previous analyses [1], the direction of incidence specified by

the angle * should not, at this point in the development, be arbitrarily set

to some convenient value such as 0 or 7/2 . The reason for this is that the

surface may have anisotropic roughness and the orientation of the x and y

axes of the reference coordinate 'system should be fixed relative to this sur-

face characteristic and not the direction of incidence.

Since the fields inside the surface integral in (4.3) are the fields

induced on the infinite planar dielectric surface S , it is convenient to
0

further categorize the problem according to the polarization of the incident

-. -4
fields. For both Ei and E ' horizontally polarized, and e' areiA

orthogonal to the plane formed by the unit vectors ki and i^ - ^- where n^

is the normal to the mean or unperturbed surface. In this case both e and

e' are totally tangential to the mean plane. For both Ei and E' verti-

cally polarized, e and ' are parallel to the plane formed by ki and

cA A
n .

4.2.1 Horizontal Polarization
A

When a and e' are tangential to the mean or unperturbed surface, the

fields E , ' , D and '' (when evaluated on S ) are entirely tangential to
0

S . Since the tangential component of the electric field is continuous across
0

an interface, AE-0 . Furthermore, since there is no change in Ur across

the boundary and the lower medium is assumed not to be perfectly conducting,

AB and Al are both zero on the interface. Consequently, (4.3) reduces to

the following;
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k 2exp(-JkR)
6 E e = - E CoS(

0 0

S
0

The total E'-field on the surface S due to Et  is given by

(l+Rh) Ei (SO) -= Eo(I+ R)exp (-ije' (4.6)

where Rh is the Fresnel (field) reflection coefficient for horizontal polari-

zation and rj = + yy or just r evaluated on S 0 The discontinuity in0

D is given by

A D EE(z= - E(z=h0) (4.7)o 'z + r '~-

and

E(z 0+ )  a +R h ) E, (S O ) (4.8a)

E(z-0-) Th E (SO ) (4.8b)
h i (O)

where Th  is the Fresnel (field) transmission coefficient for horizontal

polarization. Combining (4.8a) and (4.8b) in (4.7)yields

A =C [I+R h -CT hl E i(S 0)

or

D - Eh] -oi.~ Ll +Rh er T oexp j ,)e(4.9)

Multiplying (4.7) by (4.9) and realizing that Th 1 + Rh  yields

E° E2 (+ 12
00 - (Cr - I) exp J 2ki ee (4.10)

Substituting this result in (4.5) produces the desired result for the first
A

order perturbation field polarized in the e' direction

38



2
-k0 E 2 I

4,rR exp(-jkR)(l+R) (C 1) exp( -J 2k j. dxdy
(4.11)

where S.c' = 1,

Rh cos8- 4C - sin2 e

and so

2 ~4(E r -1) cos 2 e

(1+R h ) 2 ( 2 (4.12)

[Cos 6 + 4i2e]

There are several points to note about (4.11). The derivation of (4.11)

was considerably simpler than the Rayleigh-Rice approach [1]; this is because

all of the difficult work was done in obtaining (4.3). Equation (4.7) is an

expression for the scattered first order perturbation field, a more meaning-

ful quantity than the average scattered power when dealing with phase sensi-

tive systems. The average of (4.11) is zero because <s> -0; however, the

average of <16'Ee or2> the incoherent power is not zero. At the beginning

of this section e' was specified to be in the same direction as e , thus

1E-e' represents 6VEhh where the double-h subscript denotes horizontal

polarization on transmission and reception. It is now possible to examine the

consequences of cross-polarized sampling of the scattered field. In this case

e' is orthogonal to e ; thus, e is horizontally polarized and e' is

vertically polarized, i.e.

e h h sini + cos9

Aj Ae e- - cos cos - cosesin y + sin0
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Returning to (4.3) for this case, it is noted that AE is still zero because

E is tangential to S , AB and AH are still zero because there is no

change in p r across S0 and the conductivity is assumed finite, and the prob-

44.
lem reduces to evaluating A6E' on S . However, AD has the direction

e while ' is polarized in the A direction, consequently, whil E ehe

and there is no depolarization by the surface. This is Just a confirmation of

the fact that first order perturbation theory does not lead to a depolarized

scattered field when the roughness is small scale.

4.2.2 Vertical Polarization

The case of vertical polarization is a bit more algebraically involved

because AE is no longer zero across S . Both magnetic field discontinu-0

ities, A and AA , are still zero for the same reason as given above.

Thus, (4.3) reduces to

64I , ko2 exp( -j k0 R) F [AE- _ A ]d So (4.13)
4 R E e f 0(

S
a

For vertical polarization, it is customary to use the incident magnetic field

H as the source. Thus, the incident, reflected and transmitted magnetic

fields on S are given by

H= Hoehexp ( - j i)

Ht H Tv eh exp(-J r )

t 0 vh 

Iwhere R and T are the Fresnel (field) reflection and transmission co-
v v

efficients for vertical polarization. On SO  the corresponding electric fields

are as follows;
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E 0 .4 k xH ; E 0 kx-q tq t rt t

AA

where q - i, r and ki kr and kt specify the direction of propagation of the
"4

incident, reflected, and transmitted fields. Note that since rj is on So

=k -

which is merely a restatement of the fact that the angle of incidence equals

the angle of reflection and Snell's law [9]. For backscattering and like

polarization sampling of the scattered field, the primed fields are the same

as those above.

Although somewhat cumbersome at this stage of the development, it is

desirable to split the fields into components which are tangential to and

normal to S . The reason for introducing this transformation is that it
0

will be very useful in the composite surface development and it is therefore

beneficial to obtain some facility with the technique on this easier problem.

The normal to S is n " while the tangent will be taken as r = f x eh

AA A

This particular choice of T is convenient because T e v selects the com-

ponent e v that is tangent to the surface. Since A -T 0 and An-n - 0

on S , (4.13) simplifies to0

k2 exp(- J k 0R)f

61 - k0 e4R E ) .)(D') - (ADT)(E ' )] s dSv 41TRE J f '' [( so0

S (4.14)

where 91 has been replaced by its equivalent 9v since like polarization

sampling of the scattered field has been specified. The boundary conditions

4 - 0 and A-^ - 0 should not be discarded because they will provide some

useful relationships. From A-.T - 0 there results
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T( h) e v( )+ R v(k= )  (4.15)
i h v A A - t h

r

while - 0 yields

[(ix eh) + R( k xeh)l .i - r TA(kTX h) "  (4.16)

where = Ei +E -Et and 8=Di +D -D have been used along with (4.15)

and D C E

It is now necessary to determine the field quantities inside the integra-

tion in (4.14). The quantity AE-A can be reduced to the following form

through the use of (4.15);

AEon M - H°  v ( r l) exp ( kir (ktxeh) n  (4.17)

r

while (4.16) simplifies D' n to

g.fl = - , H T I exp(- ji'')(txh) (4.18)0o v rh

so

(E'.n)('D' A) 2 [(

n - - oo 0 Hx0(v (r - 1 )  - .) L[(h2't h (4.19)

Through similar manipulations,

T 4-. (A X A

-r H v (1-e) exp(- ir ) (k ×  (4.20)
rr

and

P0v X.' A,
H exp(- kh) (4.21)

r
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8o

2 [2

. 'o-T -U (1-C)-exp (-j ,' [T] (4.22)
r r

Combining (4.19) and (4.22) and completing the unit vector operations yields -

),.A) - A ),.) - 2 H-2) [2+ (E:-)sin2  Oe ( - j 2,'r

n T 2 [Lr rie-Ji
V r . (4.23)

where

2c cos O

T r

e coos6 + E- sin 26
r r

Substituting this result in (4.14) and recognizing that E 0 Ho

and 9v = -k Xah . the final result is obtained
V i

k exp(-j kR) o 2 r-cf-1

O 4R -H 0 v 2 [r+ ( )sin2f xp(-J2ki )4sdxdy
00 C r

(4.24)

Essentially the same remarks apply to the vertically polarized scattered

field as for the horizontal case. In addition, it should be noted that if

(4.11) and (4.24) are converted to o or the scattering cross section per

unit area according to

r 4IR 2 < 161E112>

o(,~ -lim. lrn A7 2 E

R+ A-+ E o
0

where A is the illuminated area, the result is identical to the result

obtained by Peake using the Rayleigh-Rice approach (1].
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4.3 Bistatic Scattering From A Dielectric Surface With Small Roughness

For bistatic scattering the unit vectors specifying the directions of

incidence of the unprimed and primed fields are given by (see Figure 4-1)

ki - -sinsicos i -sin isin - cosEi z

(4.25)

k' -- sin0 co s s x -sin e sins Y - cos e

Aan k^k
and i koi k ko i . The unit vectors specifying the directions of

horizontal and vertical polarizations for the unprimed and unprimed fields

are as follows;

eh -sinei S + cOsOi 9

e -sir x +cos s y

(4.26)
ev = -cos~i C°S~i A - cos~i sin~i A + sinsi A

A A

e -cose coso i - coseO sino, 9 + sine iz

The normal to the unperturbed surface is n - z while the tangents to the

surface for vertical polarizations are given by

A A A A

x eh TV = n x eh (4.27)

Equations (4.25)-(4.27) describe the basic quantities that will be required in

this section.

4.3.1 Horizontal Polarization

Since AB and AH are zero, because there is no change in r across

S and the conductivity is finite, (4.3) becomes

k2 exp(-j k o R )

0oe 7rR e f [A-D"~ -E Cs~' d S 0 (4.28)

S
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Furthermore, Al is also zero across S because E is tangent ial to S 0

Thus, (4.28) becomes

k exp-j k 0R)
. 41oRE C [ADE'] CadS (4.29)

04 0 f
S

On the surface S , the incident, reflected, and transmitted electric fields
0

(unprimed and primed) are as follows;

E 0 exp(-IJkir.r)e h E -' - Eoexp( -j i°rL)'h

Er ER. ex( E -E x(-jk re

E T T exp(-jkr-r ) h  E' E T'exp(-j • )eEt oh j h t oh jh

where also on the surface S (4.30)
0

tk *r. - r r k *r k'I* r - k'r -r. k' -r (4.31)

and the same notation as introduced earlier has been continued. The fields

and E' on S are as follows;

= 0Eo0(+Rh-e r Th ) exp (J ti r)eh

P, - Eo (l + ')exp (- J k.)0 e h

Using the fact that 1 + Rh - Th , the product ADE' becomes

-- E' " o

and substituting this result in (4.29) yields

k 2 exp(-Jk°R) (f L
h 4wR E0 (l+R h) (l+R ) (E dxdy

(4.32)
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This result can be easily translated into the angles (0i.0 and (Os, )

by the use of (4.25) and

h.h' cos(0i- Os)

along with

2cos 6 i  2cos861 + fi I c50 +R' =f s
+E / _ _"'sn2

cos 0 6+ - sn 2  cose +/ -sin
r i s r s

For ease of comparison, it should be noted that most results similar to (4.32)

express the direction of scattering as k which, in the above notation, iss

k Equation (4.32) yields 61Ehh , . For cross polarized sampling of the

scattered field, the problem becomes somewhat more involved and it will be

discussed in Section 4.3.3. It should be noted that when Os (backscat-

tering), (4.32) reduces to the result obtained in Section 4.2.1.

4.3.2 Vertical Polarization

Since nE and T*D are discontinuous across the unperturbed surface,

(4.3) reduces to

k2 exp (-JkoR)

6E-9' - ° e(iR n[(A(E' .*iT)O - ^ sdS (4.33)v 4OR E° C f o

so

where the scalar product T T' must be included because the unit vectors T

and T't are not necessarily parallel, e.g. see (4.27). The incident, reflec-

ted, and transmitted unprimed and primed magnetic field quantities are given by

P. xp- .
h  - - A

0 h0 e ph

* A4.
H H R exp(-i krs±g H' =H R'exp(-Jk' 9rerr o v r = HR e(-

H Ho HT exp( -ji ) . h Ht' - Ho T' exp ( - j )e r eh
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while the corresponding electric fields are

EX H E 0 i Hi
0 0

E. 4 .H+ 1 1 ( . 5

r r r rr r (4350 0

Et - k t t E - t t
o ro

o r

and D- cE , D' WC E' . The same notation introduced in Section 4.3.2 is

continued here. From the boundary condition that the tangential component of

the electric field be continuous across S , i.e. eET = 0 and E'. ' 0

the following relationships result;

T

(ki x ) + Rh(k X~)'u - ,- (k xe )T
h R(r xh). e t h

r (4.36)

T'
I A I A V ~ x ~1

r

Similarly from the continuity of the normal component of the D-field across

S % i.e. A°nm0 and L5'n - 0 , there results
0

(klxh).iR vr Xh r~ v'~T t xhef

(4.37)

(k Ixenh'  + R'(kr' x×es-nl" Or T'(t' xe)'
Sv r hr v t h

Using (4.37) to simplify the expressions for AEft and fi' .in yields
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EH - (cr-l)exp(-j ki ^)(k x) (4.38)
Cz o010 r ij t hi " r

and

D'* -n^ 0 o 0 0 r Tv kx(- kir!)( t xh), (4.39)

In a similar fashion, (4.36) is used to simplify the expressions'for AD-T

and E'.T' with the following result;

TA
A5-r AT i TcH -- exp(-j *r~)( x~ A

00 0 t eh) (4.40)

r

and

A' ^V ' "I (4.41)
E' ' -jHo- H0  - exp(-j ki r )(kt h) '

AA

Substituting (4.38) -,(4.41) in (4.33), noting that T.t' ff= cos(Oi-)

and simplifying the unit vector operations yields the following result for

,_ v
15t

P1 exp(-jk R) (e -1)
0F T sine sinO + /(E: sin2 O)(C 2v = ye 0o 4WR v v 2 r i s rrsin )

0 C . j~
r

cos( 1 -)f exp-id k + k'. r dxdy (4.42)

where E HOlice and
0 0 00

2 c cosO.
T =I+R = r I
v v C4sin826€r o i + r

48



and T' T (0 +-0) . Equation (4.42) is 6VE , and it is easily shown
V V 5

to reduce to the result for backscattering in Section 4.2.2. when Oi s

and ei =6, . Once again it should be emphasized that the most difficult

part of obtaining (4.42) is evaluating the terms (k t xeh)T and (kt h')

in (4.40) and (4.41). As noted previously this is a consequence of the fact

that the difficult analysis was finished once (4.3) was derived and the actual

evaluation of (4.3) is very straightforward. Finally, comparing the 0*

values resulting from (4.32) and (4.42) with the corresponding results obtained

from the Rayleigh-Rice theory [10] shows complete agreement.

4.3.3 Cross Polarization

As shown in Sections 4.2.1 and 4.2.2, depolarization for scattering by

small scale roughness i s a second order effect in the plane of incidence.

If, however, the scattered field outside of the plane of incidence is computed,

it will be found to have a nonzero cross polarized component. This result is

simply a consequence of the fact that the unit vectors eh and e' arev

not fixed with respect to the surface-centered coordinate system and they

change their directions as the observation point moves out of the plane of

incidence. This, of course, is a purely geometrical effect and it has nothing

to do with any change in the basic scattering mechanism.

The derivation of the results follows essentially the same pattern as

set forth in the previous sections. There is one point that should be noted

because it simplifies the algebra somewhat. For the case of the incident

field horizontally polarized ( and the scattered field vertically polarized

(&') , the unprimed field quantities should be obtained from

E - E exp( -j " )eh while the primed fields should be obtained from

Hi' H ex (^ jre(
0- Hexp(-jk'r )' . For the incident field vertically polarized (e )

49
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and the scattered field horizontally polarized (e h ) , the unprimed fields are

obtained from Hi - H exp(-j k,-r.)e h while the primed fields are to be de-

rived from E' = E exp(-j k.L)t . This approach is consistent with the

technique of obtaining all field quantities from the horizontal (Aeh or eh

field for planar surface reflection.

With E= Ho °P 0I_0 , the following expressions for 61 and 6 Evh,

result;

hv 7rR 0O~ o~ + +i20 i  CCSO+ +i2s

6(Eh, = e+ Sin E0s)(C {+rSin2 }
• f f ex p j- - -_r*.- ] C d x d y (4 .4 3 )

k ep-ik R)I FCosacose sin(b._t' 1) i 261

6' h o j r

'II exp[-j (k + _k'.~ --j dx dy (4.44)

where, in summary, the angles are defined in Figure 4.2, r±= xZ + y, and

k and are defined as and k°  , respectively, where k and
i 1 01

k i ' are given in (4.25).

When comparing (4.43) and (4.44) with the cross polarized scattered fields

resulting from the Rayleigh-Rice approach (10], ci should be set equal to 7r.

The expression for 6 1 Evh, agrees with the results in [10, pg. 706]. The

expression for 6 1Ehv, is, however, the negative of the ahv coefficient in

[10, pg. 706, eqn. 9.1-691. Normally this difference is not important because
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Figure 4-2. Geometry for bistatic scattering from a randomly
rough surface having onJ~y small scale roughness
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61 EvI is squared and then averaged to find the incoherent power. However,

if one is dealing with circular polarization the sign does become critical.

To resolve this issue, a special case can be constructed whereby ahv should

agree with a or 61 Eh 6'Evv . This special case involves taking

, M 1T and s a - 0 and 0 -O in the expression for a or 61E, and

comparing this result with ahv and 61Ehv, for s - i/2 , and

= 0 In this special case both 61EyI and 61E, should be polarized

in the -x-direction. Comparing (4.42) and (4.43) for this special case shows

that indeed 61Evv, 6'Ehv . However, evaluating aw and Lhv from [10]

results in a = -0hv ; consequently, there does appear to be a sign error
vv h

in the expression for hv and (4.43) is correct.

This section completes the development for scattering from a dielectric

surface having only a small scale roughness. Once again it should be emphasized

that the purposes of Sections 4.2 and 4.3 are (1) to check the Burrows pertur-

bation approach against the conventional Rayleigh-Rice results and (2) to il-

lustrate the actual mechanics of evaluating the Burrows expression for the

first order perturbation field. Hopefully, this latter purpose, if achieved,

should considerably simplify the transition to the composite surface case.

4.4 Bistatic Scattering From A Dielectric Surface With Composite Roughness

For small scale roughness superposed on a planar surface, the Burrows

perturbation formula (4.3) is particularly easy to evaluate. This results from

the fact that one deals with the fields on an infinite planar surface and, for

such a surface, the fields are easily described and related through the Fresnel

coefficients, Snell's law, and the equality of the angles of incidence and

reflection. For a composite surface, the unperturbed surface is not planar

but it is assumed to be very gently undulating. More specifically, the unper-

turbed surface is actually defined such that it contains no spatial frequency
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components which are smaller than yk°0 , where y is a constant which is

greater than unity. Of course, it is desirable to have y as large as pos-

sible but this is not always practical since the small scale height must satisfy

4ko2 2 << 1 [6] . However, if y can be made sufficiently large then the

scattering from the unperturbed surface can be treated using physical optics.

Physical optics assumes that the surface may be considered to be locally planar

and the fields on the surface can be accurately approximated using Fresnel

theory. This approach is recognized to be essentially the same as the small

scale roughness on a planar surface problem. The one important difference is

that for the gently undulating unperturbed surface, the local normal is no

longer entirely z-directed and, in fact, depends upon the slopes of the large

scale surface. This means that one must construct a local coordinate system

on the undulating unperturbed surface and compute the surface fields required

in (4.3) in terms of this system. This must be done for both the unprimed and

primed fields because they have different angles and directions of incidence

for the general bistatic case.

For the unprimed fields, the important unit vectors are i and R

which is the normal to the large scale or unperturbed surface. These two quan-

tities are important because they form the local plane of incidence. One next

constructs unit vectors e and e which are orthogonal and parallel,
eth an PIV

respectively, to k and n These unit vectors are also horizontally and

vertically polarized, respectively, with respect to the local plane of inci-

dence. Any arbitrarily polarized unprimed incident field can now be decomposed

into components parallel to e h and ev since the incident field must be

A

transverse to ki . The unprimed field quantities required in (4.3) can then

be computed as in the previous sections. The exact same construction of eth

and ev and the decomposition of the primed incident field must be performed
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in order to compute the primed fields required in (4.3). Fortunately, this
is easily accomplished by simply changing ei  to as and i to Os in

the unprimed quantities.

Before getting into the actual details, there are a few other points that

should be noted. All of the above noted manipulations are goint to lead to

the following changes in 61E obtained in equation (16) of [6]. First, the

factor r , is going to depend on e , the angles and directions of inci-
pp r •

dence and scattering (6, ' 3i 'O s , 8 ) , and the slopes of the large scale or

unperturbed surface ( C ) . The only other change is that the exponen-

tial inside the surface integral will become exp[-J(ki+k').r.] where

AAr = xF + y9 + 2. because of the generalization to bistatic scattering.

Except for correcting [6] to properly include shadowing, as detailed in Section

2, all other aspects of the solution presented in [61 remain the same. Com-

bining 6'E from this analysis with Sancer's result [11] for essentially 6°E

yields the total scattered field. Furthermore, it should be expected that for

backscattering the dielectric nature of the surface should have an almost

negligible effect upon the wavenumber at which the surface height spectrum

is partitioned into large and small scale sub-spectra. Finally, because there

is no discontinuity in magnetic properties across the unperturbed surface and

the conductivity is assumed to be finite, AB and AH in (4.3) will be zero.

This fact holds true regardless of any tilting of the locally planar surface.

AAAThe first task at hand is to construct eith and e " Since e is

orthogonal to both ki and nk , it is given by

e " Ei Xi (4.45)

where i = k + 9+ kZz and the k , q =x,y and z ,are obvious from

(4.25). The normal to the large scale surface is given by
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tx ,x ,y 
+.-

n 2 2 n ix + nty9 + n z (4.46)

Expanding the cross product in (4.45) yields

eh h + h y + h z (4.47)

where

(k iy n Yz - kiz n9) . (kiz nix - kix ntz)h x X A~ g h Y fIt g

h - (kix nay - kay nix)

and eh is completely determined. For the unit vector ev things are

a bit more involved because it must be in the plane formed by ki and

to A
and also orthogonal to " For the reflected and transmitted fields ki

goes to kr and kt . This will not change the direction of h because

ki 'tr and 1t are all coplanar. This will, however, alter the direction of

8tv ; this is easily understood by noting that kq , e h , and e Xv form a

mutually orthogonal triad of unit vectors. Thus, if eth does not change

direction but kq does then eLV must necessarily change direction. What

this means is that we must find a new e for each value of k . This is
IV q

easily done by the following equality;

qv h q (4.48)

where q - i, r, and t . Note that it is not necessary to divide the rhs of

A A

(4.48) by the magnitude because it is unity, i.e. e h and kq are mutually

orthogonal by (4.45). The unit vector q may also be written asIv
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^q q (4.49)qe v v tx + l zz(.9

where

v q  - k v q  -(k h kIx qy 1z qz hLy) Ry hlz - kqzh I)

v q -- (kq h k h
tz qx - kqy hix)

and e is completely determined for q = i , r , and t . For the primed

fields, e and -  are obtained by merely replacing k by k , q -
h v q q

r, and t, in the expressions for e^h and e v"

The incident, reflected, and transmitted unprimed fields on the unper-

turbed surface will now be decomposed into locally horizontal and vertical

components. If the incident field is of the form E= E expajk
i 0 i1 r a

4A
on the unperturbed surface where ^a is its polarization direction then Ei

Er  and Et  can be written as follows;

i A i A
% h v iv

E r % . e h + Er v (4.50)

v L.v
- t t -t

t h+E v e

where

N EO exp(- j k q"rd(ga*8h)

E exp(-j k q r.( q) (4.51)

and q = i, r, t . The corresponding magnetic fields are given by

- S -k x E r(4.52)PO J q q 6 qt
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where 6q - / for q - i and r, and 6 -1 . Expanding (4.52) yields
qt r tt

V(-opo et E e qh)

V1 V V Vk

H r /r0 rr+E et

r. _ j~ \flLr _ v -t

Froa Fresnel theory, the oetf H r is equal to R times the

6,hcomponent of Hi , so

r
Er -R E (4.53)

V V V

Similarly, the eh-component of is equal to T times the ethcomponentt V

of HE ,so

TV
E t -E ^ v (454)

V V
-r

Equations (4.53) and (4.54) can now be used in (4.50) to express all of the

fields in terms of Ebi and i.e.

+ ii

Eufa e El h•h + Ev eP

Er-RhEh eb +R E Ve (4.55)

It M Tp Eeth + -Ee ̂

r

OThe subscripts "L" on RVO Rh, TV, Tbh means that the angles in the appropriate
Fresnel formulas must be defined with respect to the normal to the large scale
surface, fi,



where and E are given by (4.52) with q -i . The corresponding D-fields

+ 4 4 4.
are; D E ' e E ,D o  E " The primed fields may be obtained

01 r o r o or t
from (4.55) and (4.51) by replacing k by k' , A by by q A q' and

q q eth eh ebei
by changing e to whatever scattered field polarization is to be sampled,

a

say, eb

The appropriate form of (4.3) is

6Ee - k 2 exp(-j koR) - 4r  S (.566E.a b. o7r E ( ,. ) - 8.-E'] asd S0 (4.56)

S
0

where the shadowing factor has been temporarily omitted from the integrand

since it can be added at the end of the development. The (AE-n) is equal

to (Ei +Er t) n or hsing (4.55) and noting that R 'eh 0

T
A At 0^

-e + R e *n e~ en (4.57)

(4.57) can be simplified somewhat by using the relationship that results from

t .fi =0 . The final result is

A-.itSo E (-) T et .n (4.58)

For n,

Dn E e Ore T , . ) (4.59)

so the product of (4.58) and (4.59) can be written as follows

(,Ifi ) ,'. - +, xp [j ( .€).-] eo cr ) TT( ._ (e,,. ,, (4.60)
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It can be shown that

• sinO~
0[v -
RNv t I

r

and

^t' sinO~iI

r

where

sin o Vi.- i (i.E) 2

sin ei v i

so (4.60) becomes

(A(ft 20 r VLVL r exp[- "').

(4.61)

For the remaining term in (4.56), the important parts are ( )p and

(E') where the p-subscrlpt denotes tangential to the large scale surface,
p

i.e. the normal component of D is continuous across the boundary so ADn 0

The tangential components of the D-field can be found by decomposing AD into

components directed along h and , where T x eh i.e.

(A) p- ( .A) t h + (8. (4.62)

Using

~m 0  hl+ -r Th )Sh + COE v q+ pe IV/ rev
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and simplifying this expression with the aid of

T
^IjA Ar1 A tA
(eh T + R ( v - (e IVT)

r

which results from (6) d 0 yields

pE

(t6) iac E ((e- 0- E T (C e T
p h 9b r th re - v r 9sv

r
(4.63)

The appropriate expression for ( n) is
p

-PEp Th e~h +I E -L(e S (4.64)

r

since on the unperturbed surface E - Pr +P Eo The relationship for
r

(4D) (Ev) p Is obtained by taking the dot product of (4.63) with (4.64). Comn-

bining this result with (4.61) and substituting into (4.56) yields the follow-

ing result;

VEab W R 0 ffr ab( XIvly)I(x~y)exp _j(k+ x(J )A i)r] dX dy

(4 .65)

where 6 1Ea is the scattered first order perturbation field for an incident

polarization a and scattered polarization 9b I(x,y) is unity on the

illuminated parts of the surface and zero for the shadowed parts, and
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(Cr-1) 
A T T,ab + CLt2 t(Aa* v)(Ab~)( Lv) sine sie

A Ak k i - (n,, k ) n, k)J + A *'h)ThTh
+ 1 -s.2... C - .2 I _ ; (.^ ( ' )(Aeb i)Th

rti ~ ~ si rt sii 6 bb bh

ILii I+e)T r &v-i~
sin eL sin aV (b Lh h Sr ftT r

eb ev r(e a[ei h (4.66)

For convenience, the above terms are sumaarized below

a - Polarization of the incident electric field (Ei E ea)

A SAeb Polarization of the scattered electric field (Es Eso e )

n-qx y4 A

i i

A A A A

k "k0 ; ' =-sin 6 Cos i x - sin O5 sin y- Cos e z

AA AA

k ^ in - ossin 8s cos x-sine s i -C S

k i Xnt A k 'Xn Aj Ax

eth -i A eh M Iij A.v eh XflxI X At lv eh Xki Lv eh x

in k n- sine -

XA = + y^,+ ;
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2e cos O 2e cos "
T r i T' r

S r Cos + sinc2 i rCos + / -sin 2 'itrcs r Li i r L

2cos Th' 2cos e'
13,VOrsn2 e i + r _ i

CosOTi-+- cosOi + $_ - en2

Attempts have been made to compare (4.66) with the equivalent factor

resulting from the "tilted-plane" approach [5] but, unfortunately, the cor-

respondence is not easy to establish. It appears that such a comparison

might best be accomplished by comparing numerical values of (4.66) with the

corresponding factor from the "tilted-plane" approach [5].

Equation (4.65) is the desired result. From this expression, one can

easily obtain aa; from

0 lira lira {4R 2  I [<J°Eab> + 1 abJ 2  j]  
(4.67)

0

along with the development given in (6] and as corrected in Section 2. The

contribution of the zeroth order incoherent power <1 6Eabj 2 > has been previ-

ously obtained by Sancer [11] and his results can be used directly in (4.67).
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5.0 A USEFUL RELATIONSHIP FOR THE JOINT SLOPE PROBABILITY DENSITY FUNCTION

5.1 Background

The incoherent power scattered in and about the specular direction de-

pends upon the joint probability density function (jpdf) of the large scale

slopes. The jpdf for the large scale slopes is also important in determin-

ing the degree of "tilt" or k-space broadening imparted to the small scale

Bragg scatterers. Ideally, one would like to measure the jpdf for the large

scale slopes, the roughness spectrum of the small scale heights, and the com-

plex dielectric constant of the surface in order to predict the average scat-

tering properties of a specified section of terrain. That is, these surface

measurements would be substituted in the rough surface scattering model which,

in turn, would provide an estimate of the average coherent and incoherent

scattered power. From a practical point of view, measurements of the jpdf

for the slopes and the small scale roughness spectrum are very difficult to

obtain and the difficulty increases as the radar or electromagnetic wave-

length decreases. For example, in the case of an L-band system with

X = 30 cm, the small scale part of the scattering model will require sur-0

face height spectral measurements of surface undulations having wavelengths

of less than about 90 cm because X X o/2)csc 6 for backscatter.

For the large scale features of the surface, the jpdf for the slopes repre-

senting surface features having spatial wavelengths greater than about 90 cm

is required. Obviously, spectral information on the small scale features is

going to be the most difficult to obtain. However, even the jpdf for the

large scale slopes is going to be difficult to estimate. It is not unrea-

sonable to expect that we can obtain measurements of the jpdf for the large

scale heights and even the correlation function for the heights at least some-

what close to the 90 cm spatial resolution. However, this information must
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somehow be translated into the jpdf for the surface slopes and this is where

the difficulty comes in. We ignore the possibility of a direct measurement

of the jpdf of the large scale slopes for arbitrary terrain because such a

task appears to be too difficult to even contemplate.

The question basically boils down to the feasibility of translating or

converting measurements of the jpdf for the surface heights into the jpdf for

the surface slopes. The purpose of this section is to point out an analyti-

cal means for accomplishing this transformation and suggest that the scheme

be attempted on an experimental basis. The relationship is not new and, in

fact, results from some earlier rough surface scattering analysis. However,

it has apparently gone unnoticed at least insofar as it applies to this very

real world problem of translating the height jpdf into the slope jpdf.

5.2 The Transformation

Perhaps the oldest approach to estimating the quasi-specular incoherent

power scattered by a rough surface is now called the autocorrelation approach.

Basically, one assumes the validity of physical optics, interchanges the

order of spatial integration and ensemble averaging in the expression for the

scattered power, and assumes Gaussian surface statistics with the final re-

sult that the average scattered power is dependent upon the behavior of the

surface height correlation function near IArI = 0[1] . In the mid-60's,

Kodis [2] showed that the average scattered power could alternatively be

interpreted in terms of the number of specular points on the surface and the

absolute radii of curvature at the specular points. Barrick [3] subsequently

linked these two approaches in the high frequency limit where both are valid.

In the process of establishing the similarity between the authcorrela-

tion and specular point approaches, Barrick obtained a relationship between

the jpdf's of the surface heights and the surface slopes. In particular,
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if Px( X,?y) is the jpdf of the x and y surface slope components and
cxcy y

0 C2(kx,k y) is the joint characteristic function for the surface heights

Cl(xlyY) and 2 (x2,y2) then [3]

qxq qr
Pcx y Cx - z , y = - q A-- Rims C C (k x k o q z k -k q z; ,A )

y q 1 2 - j

*exp(j koqxAx + J koqyAy)dAx dAy (5.1)

where Ax = x, - x2  and Ay = yl - Y2 " In (5.1) the quantities qx,qy and

q are limited as follows; Jqij < i , i = x,y,z . It should be noted that

both 0iC (-) and P (-) are implicit functions of the surface height

correlation function; this is how the (Ax,Ay) variation comes about in (5.1).

If an analytical form for i is available then (5.1) can be used

directly to obtain the jpdf for the slopes. In cases where 'i (.) is
Cl 2

obtained from measured data, it is not immediately obvious that (5.1) is of

any practical use since the behavior of the joint height characteristic func-

tion will not be known in the limit of k -c and k - . However, consider
x y

the following reasoning as a means for obtaining estimates of P (.,*)
x y

Since 0 is the two-dimensional Fourier transform of the jpdf for

the height, it can be obtained numerically by using a Fast Fourier Transform

(FFT) on the measured jpdf height data. The result of this operation will be

denoted by . Because of measurement noise and particularly quantiza-

, tion noise in the measured height jpdf data, 0 i 2 will be limited to values

less than, say, k < K and k < K . The maximum value of k that canX- x y- y o

be achieved in (5.1) is therefore max(Kx/qz ,K y/qz) . If qz is small then

the resulting maximum value of k can be very large. The transform variables
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in (5.1) will be given by Kxqx/qz and Ky q y/q which may also be large,

depending upon qx and qy Thus, if qz is near zero and Pxy is co-

puted using the following;

L.x ,)U 2 ff
S - , . . f(kK ,k y=Ky ;Ax,Ay)

z -L

K K q XK Yq x

exp( Ax + j -y q x Ay)dAxdAy (5.2)
q z qz

it may turn out that P is a sufficiently good estimate of P as toxy x~y

be useful in the scattering model. Unfortunately, this approach breaks down

when or q. 0 ; however, it may be possible to get close enough toy

* qx=0 or qy -O to inter the behavior of P along these lines in the
y~ ly

qxyq-plane. The limits on the integrations in (5.2) symbolically denoted

as ± L , will be determined by the correlation length of the surface, i.e.

the separation distance for which the surface height correlation function

is essentially zero.

An alternate approach to estimating P xy is to examine the asymptotic

behavior of $ as k -K and k -K . From this behavior, it may bei 2 x x y y

possible to generate an asymptotic functional dependence of $ on k

and k . By repeating this procedure for different values of Ax and Ayy

it might be possible to also generate or build-in the functional dependence

of 0 on Ax and Ay . In this manner, the dependence of ) 2 upon~upon

k x,k y,A , and Ay is obtained at least in the limit of moderately large kx

and k * This functional form could then be transformed according to (5.2).

The major problem here is that the accuracy of the result will depend directly

upon how precisely the surface height correlation function is known near

Ax-0 and Ay-O - This statement results from the fact that the behavior
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of the transform of a function as k* is directly determined by the behavior

of the function as ArO [4].

The problem of converting height jpdf data into slope jpdf results is

definitely not easy. Even with the use of (5.1) the problem still poses a

number of numerical complexities, primarily because of the required limit as

k a * However, as discussed above, (5.1) does provide some hope in solving
0

what is otherwise a totally untractable problem. It is felt there is suf-

ficient hope as to warrant further investigation of the utility of (5.1) in

the solution of this problem.
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